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On the Analysis of Solute Uptake in Circulating Diffusing Systems by a Curve 
Fitting Procedure 

Robert Diamond 
M.R.C. Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH 

A method is presented of analysing the time course of observed solute concentration in a circulating 
system in terms of the reaction of the solute with a stationary bed, using the laws of diffusion. Indications 
are that an accuracy of about 1% is achieved. 

In an accompanying paper Dryland and Sheppard describe a 
system used for the synthesis of polypeptides.’ The essential 
characteristics of this system are that it includes a column 
containing a gel to which is bound an oligopeptide to which a 
further amino acid residue is to be added. The (chemically 
modified) addend is introduced into the system and circulates in 
a closed loop, passing through the column several times. As it 
does so it is irreversibly removed from solution by covalently 
bonding to the bound peptide and, in addition, spreads by 
diffusion in the column, and, to a lesser extent, in other parts of 
the circulation loop. 

The loop includes an U.V. absorption cell at which the 
concentration of the addend may be continuously monitored. 
The addend passes through this cell before its first passage 
through the column, so that the time-integral of the first peak 
on the concentration-time curve is a measure of the amount of 
reagent added to the system. Subsequently the concentration- 
time curve at the observation cell shows a series of peaks which 
become progressively broader by diffusion and lower by the 
combined effects of diffusion and irreversible uptake in the 
column. After a few cycles these peaks overlap each other to a 
large extent. It is the purpose of this paper to show how such a 
concentration-time curve may be analysed to give reliable 
measures of the uptake of reagent in the presence of diffusion. 

TheoreticaZ Background-Let z be a one-dimensional 
positional co-ordinate measured along the axis of the column 
from a fixed origin and let 6 similarly be a one-dimensional 
positional co-ordinate but measured relative to a moving frame 
of reference so that at time t 

where U is the velocity of the frame of reference. U May take 
any value and is not limited to the case of equality with the flow 
velocity, V, of the solvent. Let C be the concentration of reagent 
in the solution then 

I 

ac az 
(%)c = (z)(z)c + (%)z = + (2)z. 
Then, following H o ~ g h t o n , ~  we consider first the equation of 
continuity at a point in the solution moving with the solution, 
then U = V and Fick’s second law becomes 

(3) 

in which E is the axial diffusion coefficient, B is the number of 
adsorbed moles per unit volume of packed absorbent, and r is 

the ratio volume of solvent/volume of absorbent. The last 
term represents exchange between the solution and the fixed 
absorbent. With the foregoing results this is 

In general, therefore, for any U equations (2 )  and (4) give 

We now suppose, again following Houghton, that 

B = Bo + K I C  + KzC2.  (6)  

Here B, represents irreversibly bound material, K ,  represents 
the usual linear absorption, and K ,  may be assumed to be small 
but, if negative, may be used to represent the onset of saturation. 
We then have 

which, in equation (3, gives, after some rearrangement, 

(:)= + (3[%q = 

P = 1 + ( K ,  + 2K,C)/r 

which is true for any frame velocity U and its corresponding 5. 
In particular, if we choose 

U =  V / Q  

Q = 1 + K, / r  

and define 

A. = 2K2/Q 

D = E/Q 

(9) 
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then equation (8) becomes 

L ( E )  - (3) - (12) 
1 + hC at2  f (r  + K,)(1 + hC) at z 

If there is no saturation, K2 = 0, h = 0, and if B, is constant 
then this reduces to 

which describes simple diffusion in the co-ordinate system 6,  i.e. 
moving with a velocity and apparent diffusion coefficient given 
by equations (9) and (11). Note that D, U, and h are all 
independent of B, so that equation (13) holds for any constant 
B,. B, Does, however, have a time derivative, particularly in 
the early stages, the influence of which we assess later. 

If h # 0 then asymmetries arise in the peaks because solute is 
swept past a saturated bed with velocity V rather than the 
reduced velocity U, so that high C regions of solution appear to 
travel faster than low C regions. This effect is studied in detail by 
H ~ u g h t o n . ~  Asymmetric peaks are seen in our system, but for 
quite different reasons. The observed curves can be accounted 
for satisfactorily assuming K2 = h = 0, and no further con- 
sideration will be given to the non-linear case. 

A general solution to equation (13) is 

-Q) 

Suppose the reagent is initially confined to a narrow range of 
6‘ values and may be described by 

for some small positive a, then equation (14) gives 

in which 

C({’,O)dg’ (17) 

represents the total solute present, the integration being done at 
constant time, A being the cross sectional area of solution in the 
column. In equation (15), a is the width of the peak measured 
from the peak centre to where C is e-ff (- 1/20) of its maximum 
value, and equation (16) shows that the square of this width rises 
linearly with time. If the initial distribution is not Gaussian, 
equation (16) becomes an increasingly good description as 4nDt 
becomes large compared with the square of the initial width. 

To assess the influence of the time dependence of B, 
[equation (1 2)] we suppose (dB,/dt), is proportional to the 
prevailing concentration in the solution and to the number of 
unreacted sites, i.e. to C(F - B,), where Fis the final value of B, 
attained at infinite time. We also recognize that N itself is time- 
dependent and that (N - N,)  is a measure of (F - B,). With 
this approach, equation (1 3) should then be modified to read 

where G is a constant. 
Equation (16) is then still a solution to equation (18) when 

time dependence of N is recognised because the left-hand side of 
equation (18) now has an additional term equal to - - and 
equation (18) is satisfied if 

C dN 
N dt 

C dN - -GC(N - N,)  
N dt 

i.e. if 

The approach adopted has been to treat equation (16) as 
describing the shapes of the observed peaks, with an indepen- 
dently measured value of N for each peak which may then be 
compared with equation (20). 

Experimental 
Reagent is initially admitted to the system in a highly confined 
aliquot of high concentration, which passes first through the 
observation cell and then cycles through the reaction column 
and the observation cell alternately. Effectively, therefore, the 
cell exists at fixed points on the z scale of 

z = zo + mL (21) 

where m is an integer 2 0 and L is the effective loop length. The 
observed concentration is therefore 

where AN(m) is the total reagent in the mth peak. Let t ,  be the 
time at which the mth peak passes, i.e. 

t ,  = ( z ,  + mL)/U = To + mT (23) 

and let T, be the time, relative to t ,  of an observation in the 
vicinity oft, 

i.e., t = t ,  + z, (24) 

then equation (22) becomes 

in which 

a2 4nDz, 
a = 2 + - - -  

U u3 

y = 4nDL/U3 

Thus the observed concentration-time curve is expected to 
consist of a number of peaks centred on values of t ,  given by 
equation (23), with squared widths rising linearly with slope p 
within one peak, and rising stepwise with increment y from peak 
to peak. 
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The analysis consists in fitting a curve of the form of equation 
(25) to the observed curve by the method of least squares in 
which the measured parameters are the N(rn) values which 
measure the remaining reagent and the five system parameters 
To, T, a, p, and y which, though of little interest in themselves, 
must be correctly measured if the associated N(rn) values are to 
be meaningful. In practise however, the first peak, for which 
rn = 0, relates to material which has not yet passed through the 
column even once and it usually appears to have a rather 
smaller p value, i.e. is more nearly symmetrical, than is typical of 
all subsequent peaks. Furthermore, the modification to the 
circuit tubing which occurs after the reagent is admitted to the 
system means that the interval T between the rn = 0 and rn = 1 
peaks is slightly larger than the interval between subsequent 
pairs of peaks. Accordingly, it has been found beneficial to allow 
the rn = 0 peak to have parameters a,  p, and To of its own, 
independent of the closely similar values which characterise the 
entire progression of the remaining peaks. Thus the software 
measures a total of eight layout parameters plus the coefficients 
“m). 

At the late end of the time range, peaks are affected by the 
leading fringes of peaks whose centres are outside the observed 
range. All such fringes are taken fully into account in the 
analysis, the only assumption being that there is no further 
uptake of reagent beyond the end of the observed range, so that 
all N(rn) values are assumed equal for the last peak whose centre 
is in range and all later peaks. Every peak is considered at every 
data point provided only that its corresponding exponential in 
equation (25) exceeds e-*. 

In addition to the curve-fitting process, the peaks are 
integrated by ordinate summation between minima with the 
minima located by a change of sign of the first derivative except 
that such reversals are ignored if within 10 readings of the 
previous maximum or within 30 of the previous minimum. 
Ordinate sums between these minima are alternative measures 
of N and will be denoted N’(m). Peak maxima are similarly 
located as a preliminary step from which initial, approximate, 
measures of To and Ta re  obtained and supplied to the curve 
fitting process to ensure rapid convergence. For a peak which is 
completely resolved from neighbouring peaks, especially if it is 
high and narrow, N’(rn) is a more accurate measure of its 
integral than is N(rn), and these circumstances certainly apply 
to N(0).  Accordingly, all N ’  values are available in the output, 
but, in particular, N(m) values are expressed as percentages 
[N(rn)/N’(O)] x 100. This also renders irrelevant the U in the 
denominator of equation (25) and the A in equation (17). The 
later peaks invariably overlap one another to an increasing 
extent, and for these there is no doubt that N(m) is a better 
measure of their integrals than is N’(rn). 

Figure 1 is an example of an analysis done by this means. 
The figure shows a continuous undulatory trace which is the 
observed curve of C(t )  uersus t scaled so that the highest 
observed value coincides with the 100% mark. Beneath it, 
dotted, are the individual components of the fitted curve corres- 
ponding to discrete m values, and to the terms in the summation 
equation (25). Their sum coincides with the observed curve so 
precisely that, on this scale, they cannot be told apart except at 
the right-hand foot of the first peak and on the right-hand side 
of the last peak where points plotting the calculated total can 
just be seen. The dotted line which fluctuates around the 
horizontal meridian of the figure is the error (observed C - 
calculated C )  on a scale in which one unit on the vertical axis is 
three times the r.m.s. error, which in this case is 4.74% of the 
final mean level* or 1.01% of the height of the first peak. The 
r.m.s. error in the region after the second peak is only one eighth 

* By ‘final mean level’ we mean the last peak integral divided by the 
peak separation. 
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Table 1. 

”(m)I”(O) % - 
Obs. Calc. 
100.0 100.0 
78.3 79.05 
75.5 74.78 
75.1 73.70 
74.3 73.41 
73.3 73.33 

r 1 

Obs. Calc. 
101.72 100.0 
78.75 78.86 
76.77 76.67 
76.41 76.38 
76.47 76.30 
76.2 1 76.30 

as great. The solid bent-line plots values of N(m)/N’(O) as a 
percentage, for which the vertical scale runs from 50 to 110% by 
10% intervals. The sloping straight dotted lines are plots of the 
quantity 

[equation (25)] for each rn, the horizontal range of each line 
indicating the time-range over which the corresponding peak is 
taken into account. The first of these lines is independent of the 
others, as already explained, but the remaining ones have a, p, 
and y in common. Equations (26) show that, ideally, 

which, if true exactly, would mean that these straight lines 
would run into one another end to end. Since part of the circuit 
is capillary tubing and a pump is present, it was considered 
inadvisable to assume that equation (28) would hold exactly 
and p, y, and T are independently measured. The fact that the 
results are approximately in agreement with equation (28) 
suggests that the visible asymmetry of the early peaks is being 
correctly measured and correctly applied to the later peaks 
whose interpretation depends to some extent on the validity of 
these measures. 

This example yields the results given in Table 1. The observed 
values are obtained in the manner described above and the 
calculated values are from equation (20) with suitable values of 
G and N,. 

The discrepancy at peak 0 is attributable to the steep sided 
character of this peak which, in the analysis, has an analytical 
form attributed to it which may not be justified before diffusion 
has operated on it to bring about this form. The remaining 
figures are free of this objection, yet show an increasing diver- 
gence between observed N(m) and observed N’(rn). The reason 
for this is apparent from Figure 1 where it can be seen that the 
calculated sixth peak (rn = 5 )  comes just to the right of the 
observed peak and of the calculated total, the difference being 
attributable to the fringes of the fifth and seventh peaks which 
contribute in this region. Since peak integrals in this region must 
be equal to the mean height of the observed curve multiplied by 
the peak separation, the N’(m) values are slightly less than the 
N(m) values because their peak separations (controlled only by 
the minima of the observed curve) are slightly less. It follows 
that the proper determination of T, and of p and y which 
influence it, are important for measurement of N(m), especially 
for large m. If the work of Figure 1 is repeated without 
measuring p but by setting it through equation (28) from the 
measured values of y and T (with appropriate adjustments in 
the methods of measuring both y and r )  then N(5)/N’(O) is 
reduced from 76.21 to 75.94% with smaller differences elsewhere 
and the r.m.s. error, 0, between observed and calculated curves 
rises from 4.74 to 4.80% of the final mean level. While the 
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Figure 1. An example of a concentration-time curve with its inter- 
pretation. For explanation and description see text. The vertical scale 
has four interpretations as follows. For the curve and its components 
the range is 0-1200/, of first peak height. For the error curve it is from 
-90 to +90. For N(m)/N'(O) it is from 50 to 1lVk. For [a + fir, + 
ym] values it is from 0 to 12000. The square root of this quantity 
gives the prevailing effective width of each peak on the horizontal scale 
which runs from 0 to 500 units. 

0 100.0 - 
1 99.3 100.15 
2 99.5 100.35 
3 99.7 100.52 
4 100.1 10026 

a% 3.68 

i= l  i = 2  i = 3  

101.46 102.20 102.55 
100.20 100.32 100.73 
100.62 100.77 100,68 
100.47 100.57 100.45 
100.23 100.20 100.27 

5.25 5.70 5.92 

i = 4  i = 5  
102.66 102.44 
100.07 100.05 
100-62 100.47 
100.52 100.56 
100.23 100.24 

5.98 5.69 

Table 3. 

m 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

"(W"(0) % 
100.0 
100.9 
101.7 
101.1 
100.5 
99.8 

100.8 
98.5 

100.0 
97.8 
99.8 

Mm)/"(O) % 
101.12 
98.5 

101.46 
101.5 
101.45 
100.65 
99.9 1 
99.09 
98.73 
98.43 
98.49 

Figure 2. An example of a calibration experiment for which the peak 
integrals should be constant. All scales are as for Figure 1. 

difference of 0.27% between these two values of N(5)/N'(0) is 
probably not significant, their difference of about 2.5% from 
N'(5)/N'(0) certainly is significant, with the N'(rn) values being 
systematically in error because their measurement does not take 
the peak asymmetry and overlap into account. Analyses are 
usually performed with p independently measured. Comparison 
with equation (28) then provides some check on the overall 
performance of the system. 

As a further indication that N(m) values are superior to 
N'(m) values, N(m) (rn # 0) in this example is consistent with 
equation (20) within 0.1% whereas agreement between N'(m) 
and equation (20) is nearly nine times worse, because equation 
(20) cannot model the lingering decline of N'(rn) values unless 
the early decline is more gradual. 

Figure 2 shows the results of a calibration experiment in 
which the gel in the column was replaced by washed sand so that 
there is no uptake of reagent in the column and a11 peaks should 

integrate to 1WA. In this instance the option of beginning the 
analysis at the second peak (rn = 1) has been taken, and the 
results are listed in the first three columns of Table 2. The r.m.s. 
error of the fitted curve is 3.68% of the final mean level. It is 
evident from the plotted error that in this instance the residual 
error is systematic rather than random and that, typically, the 
error changes sign four times within the width of one peak. This 
is not an indication that peak widths are mismeasured, in which 
case there would be two such sign reversals per peak, but rather, 
it is an indication that the analysis has detected a small amount 
of kurtosis in the shapes of the observed peaks, which is to be 
expected if the concentration profile of the reagent at time zero 
is rectangular. Normally, with a gel in the column, kurtosis is 
not detectable because the peaks are broader. 

The software permits up to 500 uniformly spaced readings of 
C(t) to be processed. The N'(rn) measures always begin with 
rn = 0 and use every reading, but the curve fitting part of the 
program may use everyjth reading beginning with the ih. All the 
foregoing results have used every fifth reading out of a possible 
500, beginning with the fifth. In the last five columns of Table 2 
results are given for the same data with the five possible values 
of i. These five determinations are equivalent but independent in 
the sense that no observation contributes to the results in more 
than one column, thus providing a good consistency check. 

Finally, in Table 3 we list the results from a similar experi- 
ment in which 11 peaks are present in the analysed range. These 
show that, because of the increased steepness of the early peaks, 
that the first two are not well measured by curve fitting, that in 
the middle of the range N'(rn) and N(m) values are closely 
similar, but that towards the end of the range the N'(rn) values 
are appreciably more scattered than are the N(rn) values. 

The process has been implemented in Basic on a Hewlett- 
Packard HP85. Equal weights are given to all observations and 
the least-squares normal equations are solved by the conjugate 
gradient method without searches, which is equivalent to full 
matrix inversion. Typically, some four to five cydes provide 
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convergence. The normal equations are solved in a quarter or 
less of the data-scan time required to set them up. 

2 R. C. Sheppard, Chem. Br., 1983, 19,402. 
3 G. M. Houghton, J. Phys. Chem., 1%3,67, 84. 
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